Statistical Modelling in Surveys without Neglecting The Undecided: Multinomial Logistic Regression Models and Imprecise Classification Trees under Ontic Data Imprecision

نویسندگان

  • Julia Plass
  • Paul Fink
چکیده

In surveys, and most notably in election polls, undecided participants frequently constitute subgroups of their own with specific individual characteristics. While traditional survey methods and corresponding statistical models are inherently damned to neglect this valuable information, an ontic random set view provides us with the full power of the whole statistical modelling framework. We elaborate this idea for a multinomial logistic regression model (which can be derived as a discrete choice model for voting behaviour) and an imprecise classification tree, and apply them as a prototypic illustration to the German Longitudinal Election Study 2013. Our results corroborate the importance of a sophisticated, random set-based modelling. Furthermore, by reinterpreting the undecided respondents’ answers as disjunctive random sets, general forecasts based on interval-valued point estimators are calculated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Modelling under Epistemic Data Imprecision: Some Results on Estimating Multinomial Distributions and Logistic Regression for Coarse Categorical Data

The paper deals with parameter estimation for categorical data under epistemic data imprecision, where for a part of the data only coarse(ned) versions of the true values are observable. For different observation models formalizing the information available on the coarsening process, we derive the (typically set-valued) maximum likelihood estimators of the underlying distributions. We discuss t...

متن کامل

Factors Influencing Drug Injection History among Prisoners: A Comparison between Classification and Regression Trees and Logistic Regression Analysis

Background: Due to the importance of medical studies, researchers of this field should be familiar with various types of statistical analyses to select the most appropriate method based on the characteristics of their data sets. Classification and regression trees (CARTs) can be as complementary to regression models. We compared the performance of a logistic regression model and a CART in predi...

متن کامل

Learning from Imprecise and Fuzzy Observations: Data Disambiguation through Generalized Loss Minimization

Methods for analyzing or learning from “fuzzy data” have attracted increasing attention in recent years. In many cases, however, existing methods (for precise, non-fuzzy data) are extended to the fuzzy case in an ad-hoc manner, and without carefully considering the interpretation of a fuzzy set when being used for modeling data. Distinguishing between an ontic and an epistemic interpretation of...

متن کامل

Multinomial Nonparametric Predictive Inference: Selection, Classification and Subcategory Data

In probability and statistics, uncertainty is usually quantified using single-valued probabilities satisfying Kolmogorov’s axioms. Generalisation of classical probability theory leads to various less restrictive representations of uncertainty which are collectively referred to as imprecise probability. Several approaches to statistical inference using imprecise probability have been suggested, ...

متن کامل

On the use of the imprecise Dirichlet model with fault trees

We demonstrate how the imprecise Dirichlet model can be used in modelling fault trees. As a simple example, we consider a system consisting of two parallel subsystems A and B, and assume that the whole system C fails if and only if both components A and B fail. Given test data about the failure of A or B in a sequence of experiments, what can we say about the (interval-valued) posterior predict...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015